Intro	Notation	Performance metrics	Simulations	Application	Conclusions

Prediction under hypothetical interventions: evaluation of counterfactual performance using longitudinal observational data

Nan van Geloven

n.van_geloven@lumc.nl Department of Biomedical Data Sciences Leiden University Medical Center, the Netherlands

joint work with Ruth Keogh (LSHTM, UK) Oct 9th 2023 Why do we need prediction under interventions?

- 1. For informing individual treatment decisions we would like to know
 - an individual's expected outcome if they were to receive the treatment
 - an individual's expected outcome if they were not to receive the treatment

Why do we need prediction under interventions?

- 1. For informing individual treatment decisions we would like to know
 - an individual's expected outcome if they were to receive the treatment
 - an individual's expected outcome if they were not to receive the treatment
- Prediction under dataset shift. When treatment policy is different in deployment than in development setting we would like to know
 - individuals' expected outcomes if treatment were to be administered as in deployment setting

Why do we need prediction under interventions?

- 1. For informing individual treatment decisions we would like to know
 - an individual's expected outcome if they were to receive the treatment
 - an individual's expected outcome if they were not to receive the treatment
- Prediction under dataset shift. When treatment policy is different in deployment than in development setting we would like to know
 - individuals' expected outcomes if treatment were to be administered as in deployment setting

Unless estimated from randomized studies, these expected outcomes (risks) are counter to the fact for a subset of the individuals in the development data set.

Intro	Notation	Performance metrics	Simulations	Application	Conclusions
00000					

E(Y | X = x) risk of outcome conditional on X

Causal inference

 $\begin{array}{ll} E(\ Y^1-\ Y^0\) & \mbox{average treatment effect} \\ E(\ Y^1-\ Y^0\ |\ M=m\) & \mbox{conditional average} \\ treatment effect (CATE) \end{array}$

<ロ> <四> <四> <四> <四> <四</p>

Prediction under interventions

 $\begin{array}{l} \mathsf{E}(\ \mathsf{Y}^1 \ | \ \mathsf{V}=\mathsf{v}\) \ \ \text{risk of outcome conditional on V} \\ & \text{if treatment would be 1} \\ \\ \mathsf{E}(\ \mathsf{Y}^0 \ | \ \mathsf{V}=\mathsf{v}\) \ \ \text{risk of outcome conditional on V} \\ & \text{if treatment would be 0} \end{array}$

Development of predictions under interventions

Predictions under interventions: estimates of risk under different possible treatments/interventions, while also accounting for other patient characteristics that are predictive of the outcome.

- By secondary analysis of randomized trial data
- Combining observational data with estimates of treatment effects from trials
- From observational data using e.g. MSM-IPTW^{1,2}, Cens-IPW² or g-formula³

³Dickerman et al. 2022

イロト 不得 トイヨト イヨト

¹Sperrin et al. 2018

²van Geloven et al. 2020

Evaluating performance of predictions under interventions

- Assess how well the predictions match observed outcomes in a (new) dataset, e.g. to inform model selection
- Challenge in observational validation data sets: outcomes under treatment strategy of interest are not observable for all patients.
- Aim of this work: propose methods for evaluation of counterfactual predictive performance for time-to-event outcomes

Pajouheshnia et al. (2017): studied O:E ratio and c-index estimated by IPW for point treatment and binary outcome

Intro	Notation	Performance metrics	Simulations	Application	Conclusions
000000					

- Pajouheshnia et al. (2017): studied O:E ratio and c-index estimated by IPW for point treatment and binary outcome
- Sperrin et al. (2018): studied predictive performance in the subset of patients who did not initiate statins during follow up -> selected validation sample

Intro	Notation	Performance metrics	Simulations	Application	Conclusions
000000					

- Pajouheshnia et al. (2017): studied O:E ratio and c-index estimated by IPW for point treatment and binary outcome
- Sperrin et al. (2018): studied predictive performance in the subset of patients who did not initiate statins during follow up -> selected validation sample
- Review by Lin et al. (2021) found 0/13 models assessed performance: "The most pressing problem to address for predictions under hypothetical interventions is model validation."

Intro	Notation	Performance metrics	Simulations	Application	Conclusions
000000					

- Pajouheshnia et al. (2017): studied O:E ratio and c-index estimated by IPW for point treatment and binary outcome
- Sperrin et al. (2018): studied predictive performance in the subset of patients who did not initiate statins during follow up -> selected validation sample
- Review by Lin et al. (2021) found 0/13 models assessed performance: "The most pressing problem to address for predictions under hypothetical interventions is model validation."
- Boyer et al. (sept 2023): model performance for time-varying treatment and binary outcome using IPW, conditional loss function and a doubly robust approach for squared error loss

6/25

This work (https://arxiv.org/abs/2304.10005)

Prediction under hypothetical interventions: evaluation of performance using longitudinal observational data

RUTH H. KEOGH & NAN VAN GELOVEN[†]

Department of Medical Statistics, London School of Hygiene & Tropical Medicine, London, UK Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, NL ruth.keogh@lshtm.ac.uk, n.van_geloven@lumc.nl † The two authors contributed equally.

- Validation of predictions under sustained treatment strategies using observational data with time-to-event outcome
- Extensions of performance measures: calibration, discrimination (c-index and AUCt), Brier score
- Simulations
- Application: mortality risk for liver patients when receiving or not receiving a transplant

Intro	Notation	Performance metrics	Simulations	Application	Conclusions
000000	0000	0000	0000	000	000

Observational data structure (Keogh et al 2021)

Uunobserved covariate L_0 baseline covariates used when estimating risk L_k time-dependent confounders A_k treatment status at visits k = 0, 1, 2, ... $a = a_0, a_1, ...$ treatment pattern over timeT, D(continuous) time to event plus status

8/25

IntroNotationPerformance metricsSimulationsApplicationConclusions000000000000000000000000000000

Model development

factual risk:

$$R(\tau|L_0) = P(T \leq \tau|L_0)$$

risk under intervention a:

$$R^{a}(\tau|L_{0}) = P(T^{a} \leq \tau|L_{0})$$

where T^a is counterfactual T if an individual would follow a

We assume a model for untreated risk a = (0, 0, 0, 0, 0) has been developed and we want to assess performance of estimates R^a(τ|L₀) in a new dataset

Intro	Notation	Performance metrics	Simulations	Application	Conclusions
000000	0000	0000	0000	000	000

Mimic the treatment strategy under which predictions are made

Artificially censor individuals when they deviate from the strategy of interest, for instance if $a = (0, 0, \dots)$

Artificially censored data: $(\tilde{T}_a, \tilde{D}_a)$

Use IPCW to address this artificial censoring

Let G be the conditional survival function of the artificial censoring times:

$$G_a(t|L) = \prod_{s=0}^{\lfloor t
floor} \Pr(A_s = a|A_{s-1} = a, \overline{L}_s)$$

where $\bar{L}_s = L_0, \ldots, L_s$ is the covariate history up to s

Use IPCW to address this artificial censoring

Let G be the conditional survival function of the artificial censoring times:

$$G_a(t|L) = \prod_{s=0}^{\lfloor t
floor} \Pr(A_s = a|A_{s-1} = a, \overline{L}_s)$$

where $\bar{L}_s = L_0, \ldots, L_s$ is the covariate history up to s

- Weighing by G_a⁻¹ forms a population in which all individuals had followed the strategy under evaluation
- under the assumptions of consistency, conditional sequential exchangeability, positivity and correct model specification of G_a

Calibration measures

Do estimated risks match "observed" outcomes?

- observed versus expected risk split up in subgroups defined by expected risk (calibration curve)
- "observed versus expected ratio" based on risks
- "observed versus expected ratio" based on number of events

Observed outcomes estimated by weighted Kaplan-Meier or weighted Nelson-Aalen

Discrimination measures

Are higher risks assigned to individuals who experience the event earlier?

c-index

$$\mathcal{C}^{a}_{ au} = \mathcal{P}(\hat{\mathcal{R}}^{a}_{i}(au) > \hat{\mathcal{R}}^{a}_{j}(au) | \mathcal{T}^{a}_{i} < \mathcal{T}^{a}_{j}, \mathcal{T}^{a}_{i} \leq au)$$

cumulative dynamic AUC(t)

$$AUC^{a}(t) = P(\hat{R}^{a}_{i}(t) > \hat{R}^{a}_{j}(t) | T^{a}_{i} \leq t, T^{a}_{j} > t),$$

Intro	Notation	Performance metrics	Simulations	Application	Conclusions
		0000			

Proposed estimator for C-index

$$\hat{C}^{a}(\tau) = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} I(\hat{R}_{i}^{a}(\tau) > \hat{R}_{j}^{a}(\tau)) \operatorname{comp}_{aij}^{(1)}(\tau) \hat{W}_{aij}^{(1)}}{\sum_{i=1}^{n} \sum_{j=1}^{n} \operatorname{comp}_{aij}^{(1)}(\tau) \hat{W}_{aij}^{(1)}}$$

with $\hat{W}_{aij}^{(1)} = \hat{G}_{ac}^{-1}(\tilde{T}_{ai}|L_{i}) \hat{G}_{ac}^{-1}(\tilde{T}_{ai}|L_{j})$

and $G_{ac}^{-1}(t|L) = G_a^{-1}(t|L) \times G_c^{-1}(t)$ combines weights for artificial censoring with weigths for 'standard' (non-informative) censoring.

Intro	Notation	Performance metrics	Simulations	Application	Conclusions
		0000			

Proposed estimator for C-index

$$\hat{C}^{a}(\tau) = \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} I(\hat{R}_{i}^{a}(\tau) > \hat{R}_{j}^{a}(\tau)) \operatorname{comp}_{aij}^{(1)}(\tau) \hat{W}_{aij}^{(1)}}{\sum_{i=1}^{n} \sum_{j=1}^{n} \operatorname{comp}_{aij}^{(1)}(\tau) \hat{W}_{aij}^{(1)}}$$

with $\hat{W}_{aij}^{(1)} = \hat{G}_{ac}^{-1}(\tilde{T}_{ai}^{-}|L_{i}) \hat{G}_{ac}^{-1}(\tilde{T}_{ai}^{-}|L_{j})$

and $G_{ac}^{-1}(t|L) = G_a^{-1}(t|L) \times G_c^{-1}(t)$ combines weights for artificial censoring with weigths for 'standard' (non-informative) censoring.

Extension of Gerds et al. (2013) We make a similar extension for AUC(t)

Intro	Notation	Performance metrics	Simulations	Application	Conclusions
		0000			

Brier score

Expected squared difference between event indicator and estimated risk

$$\mathsf{E}[(\mathsf{I}(\mathsf{T}^{\mathsf{a}} \leq t) - \hat{\mathsf{R}}^{\mathsf{a}}(t))^2]$$

Proposed estimator:

$$\hat{BS}^{a}(t) = \frac{1}{n} \sum_{i=1}^{n} ((I(\tilde{T}_{ai} \le t) - \hat{R}_{i}^{a}(t))^{2} W_{ai})$$

with
$$W_{ai} = \frac{I(\tilde{T}_{ai} \leq t, \tilde{D}_{ai} = 1)}{\hat{G}_{ac}(\tilde{T}_{ai}|L_i)} + \frac{I(\tilde{T}_{ai} > t)}{\hat{G}_{ac}(t|L_i)}$$
.

00000 0000 0000 000 000 000	Intro	Notation	Performance metrics	Simulations	Application	Conclusions
	000000	0000	0000	0000	000	000

Simulation setup

obtain counterfactual prediction model (using MSM-IPTW)

validation data U L_0 L_1 L_2 L_3 L_4 L_4

evaluate predictive performance

counterfactual validation data U L_0 L_1 L_2 L_3 L_4 A_0 A_1 A_2 A_3 A_4 A_4 A_4

> evaluate predictive performance (true values)

Intro 000000	Notation	Performance metrics	Simulations ○●○○	Application	Conclusions

Simulation results

- Data generated and analysed using Cox proportional hazards models and Aalen additive hazards models
- Including scenarios where we expect good and bad predictive performance of predictions under interventions
 - higher baseline hazard in development data
 - measurment error when applying the development model
 - ► conditional Cox model ≠ marginal Cox model
- Conclusion: it works!
- Simulations also show the bias introduced by the 'subset' approach

Intro	Notation	Performance metrics	Simulations	Application	Conclusions
000000	0000	0000	0000	000	000

Results calibration

Intro	Notation	Performance metrics	Simulations	Application	Conclusions
000000	0000	0000	0000	000	000

Results discrimination

-- true counterfactual -- estimated subset -- estimated IPCW

19/25

≣⇒

UNOS transplant data

- US data on patients waitlisted for a liver transplant from the United Network for Organ Sharing (UNOS)
- n=30203 patients (70%) used for development
- n=12987 patients (30%) used for validation
- Estimate risks of composite outcome of death or removal from waiting list due to worsening health condition up to 3 years under the interventions of:
 - receiving a liver transplant
 - not receiving a transplant

conditional on their characteristics at moment of making the prediction (about 30 parameters)

Intro	Notation	Performance metrics	Simulations	Application	Conclusions
				000	

Results transplant data I

Intro	Notation	Performance metrics	Simulations	Application	Conclusions
000000	0000	0000	0000	000	000

Results transplant data II

	Strategy		
	No transplant	Transplant	
Calibration: OE ratio based on risk by 3 years	0.983	1.060	
Discrimination: C-index up to 3 years	0.749	0.561	
Discrimination: AUCt at 3 years	0.781	0.552	
Prediction error: scaled Brier score (%) at 3 years	66.8	12.0	

・ロ・・聞・・思・・思・ しょうくの

22/25

Conclusions

- Our approach to counterfactual performance evaluation using artificial censoring + IPCW gives unbiased estimates of predictive performance when weights are correct
- Current work: what can be expected when assumptions do not hold?
- Future work:
 - work out how to combine with cross-validation / bootstrapping
 - compare to alternative proposal using g-formula (Dickerman et al 2022)
 - towards doubly robust approach
 - extend to competing risks

ヘロト ヘ戸ト ヘヨト ヘヨト

Intro	Notation	Performance metrics	Simulations	Application	Conclusions
000000	0000	0000	0000	000	000

Invite to "Causal inference for AI in health" seminar series

Similar seminar series by causal inference researchers in Leiden/Delft/Rotterdam. Everyone is welcome.

Next meeting Oct 23 15.00 at LUMC:

- Maurice Korf: Carefully Causal: an R function to improve causal inference in applied epidemiology
- Jim Smit: Asking what If? in the Intensive Care: a review of applied causal inference for time-varying treatments
- Marta Spreafico: Investigating positivity violations in marginal structural survival models: a study on IPTW estimator performance

Sign up to our mailing list through this google form

Intro	Notation	Performance metrics	Simulations	Application	Conclusions

References

- 1. Sperrin et al Stat Med 2018
- 2. Van Geloven et al. Eur J of Epidem 2020
- 3. Dickerman et al. Eur J Epidemiol 2022
- 4. Pajouheshnia et al. BMC Med Res Meth 2017
- 5. Lin et al. Diagn Prog Res 2021
- 6. Keogh et al. Biom J 2021
- 7. Efthimiou et al. Stat Med 2023
- 8. Boyer, arXiv Sept 2023
- 9. Gerds et al. Stat Med 2013

n.van_geloven@lumc.nl