Moral Responsibility for AI Systems Forthcoming at NeurIPS 2023

Sander Beckers

Institute for Logic, Language and Computation, University of Amsterdam srekcebrednas@gmail.com sanderbeckers.com

Amsterdam Causality Meeting, 09/10/2023

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Outline

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

1 High Level Overview

2 Causal Models and NESS

3 Causal Condition: Counterfactual NESS

4 Epistemic Condition

Outline

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

1 High Level Overview

2 Causal Models and NESS

3 Causal Condition: Counterfactual NESS

4 Epistemic Condition

Moral Responsibility

- ロ ト - 4 回 ト - 4 □

Responsibility is an overloaded and vague concept:

- Captain on a ship, CEO of a company
- Epistemic component of responsibility: uneducated surgeon
- Derivative responsibility: drunk driving
- Accountability vs attributability vs causal responsibility

Responsibility for a *single outcome*, grounded in a *single choice* made by a *single* and *artificial* agent.

Necessary but not sufficient for: blame or praise.

Moral Responsibility

Contributions:

- Formalize Causal Condition and Epistemic Condition
- Compare to two competing accounts (BvH and HK)
- Both a qualitative and a quantitative definition

Purpose:

- Definition can be used by regulator to evaluate AI systems
- Definition can be used by an AI system itself to make responsible choices
- Definition can be used by regulatory AI to evaluate *other* AI systems
- Contributes to philosophical debate on responsibility more generally

Caveat: requires (partial) knowledge of a causal model

Guiding Meta-definition

An agent who performs A = a is responsible for outcome O = o if:

- **1** The agent had control over A = a.
- **2** A = a causes O = o.
- **3** The agent believes there exists a' so that by performing A = a' they would have avoided being responsible for O = o.

(2) is the **Causal Condition**: A = a is an actual cause of O = o.

(3) is the Epistemic Condition

Informal Definition of BvH

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Braham & van Hees (2012) An Anatomy of Moral Responsibility, *Mind.*

Formalism: game-theory

Definition (BvH Responsibility)

- (Causal Condition) A = a directly NESS-causes O = o.
- (Epistemic Condition) A = a does not minimize probability of causing O = o.

Informal Definition of HK

Halpern & Kleiman-Weiner (2018) Towards Formal Definitions of Blameworthiness, Intention, and Moral Responsibility, *AAAI 18*.

Formalism: causal models + utilities

Definition (HK Responsibility)

- (Causal Condition) A = a HP-causes O = o.
- (Epistemic Condition) A = a does not minimize probability of O = o.

Choices to be made

- Which formalism? (Game-theory vs causal models)
- Which definition of causation?
 - Necessary Element of a Sufficient Set (NESS)
 - Halpern & Pearl (HP)
 - Counterfactual NESS (CNESS)
- Minimization: what to minimize?
 - (Outcome) (HK):

$$Pr(O = o | do(A = a)) \leq Pr(O = o | do(A = a'))$$

• (Causality (BvH):

$$Pr(A = a \text{ causes } O = o) \leq Pr(A = a' \text{ causes } O = o)$$

• Combination of both

My Proposal

Formalism: causal models

Definition (Responsibility)

- (Causal Condition) A = a CNESS-causes O = o.
- (Epistemic Condition)
 - A = a does not minimize probability of O = o, or
 - A = a only minimizes the probability of O = o.

Further step: degree of responsibility

Arguments

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

1 NESS (let alone HP) cannot be captured using game-theory

direct NESS vs indirect NESS

$\ensuremath{{2}}$ CNESS > NESS > direct NESS, and CNESS > HP

• My other work, but also some examples

- 3 Preventing outcome is priority, but it's not enough
 - Example where both conditions conflict

A word about causation

- Necessary Element of a Sufficient Set (NESS)
 - Richard Wright, John Mackie (INUS), legal philosophy, regularity approach.
- Halpern & Pearl (HP)
 - Causal models, counterfactual approach, AI, 2001-2005-2016.
- Counterfactual NESS (CNESS)
 - Causal models, counterfactual *and* regularity approach, based on Wright
 - Beckers (2021) The Counterfactual NESS Definition, AAAI 2021.
 - Simplification of Beckers (2021) Causal Sufficiency and Actual Causation, *Journal of Philosophical Logic*.

Outline

1 High Level Overview

2 Causal Models and NESS

3 Causal Condition: Counterfactual NESS

4 Epistemic Condition

Informal BvH Definition

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Example (Two Assassins)

Two assassins, in place as snipers, shoot and kill Victim, with each of the bullets fatally piercing Victim's heart at exactly the same moment.

(Causal Condition):

- $A_1 = 1$ is sufficient for V = 1
- \emptyset is not sufficient for V = 1
- So $A_1 = 1$ NESS-causes Death = 1.

(Epistemic Condition):

- $Pr(A_1 = 1 \text{ NESS-causes } V = 1) = 1$
- $Pr(A_1 = 0 \text{ NESS-causes } V = 1) = 0.$
- So $A_1 = 1$ fails to minimize.

Likewise for $A_2 = 1$.

Informal BvH Definition

Example (Late Preemption)

 $Assassin_1$ is slightly faster, so that his bullet kills Victim, who collapses and thereby dodges $Assassin_2$'s bullet.

 $A_2 = 1$ does not cause V = 1!

(Causal Condition):

- $A_2 = 1$ is sufficient for V = 1
- \emptyset is not sufficient for V = 1
- So *A*₂ = 1 NESS-causes *V* = 1....

Causal Models

A causal model is a tuple $M = ((\mathcal{U}, \mathcal{V}, \mathcal{R}), \mathcal{F})$:

- U: set of exogenous variables
- \mathcal{V} : set of endogenous variables
- \mathcal{R} : function that determines the possible values for every variable $Y \in \mathcal{U} \cup \mathcal{V}$
- \mathcal{F} : set of structural equations (one for each $X \in \mathcal{V}$):

Late Preemption:

- $V = BH_1 \vee BH_2$
- $BH_1 = A_1$
- $BH_2 = A_2 \wedge \neg BH_1$

Direct NESS

Definition (Sufficiency)

We say that $\vec{X} = \vec{x}$ is *sufficient* for Y = y w.r.t. (M, \vec{u}) if for all \vec{z} we have that $Y_{\vec{x},\vec{z}}(\vec{u}) = y$.

In our example:
$$BH_1 = A_1$$
: therefore $A_1 = 1$ is sufficient for $BH_1 = 1$.

 $BH_2 = A_2 \wedge \neg BH_1$: therefore $A_2 = 1$ is **not** sufficient for $BH_2 = 1$.

Also: $A_1 = 1$ is **not** sufficient for V = 1.

Direct NESS

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- the candidate cause and the effect actually occurred;
- the candidate cause is a member of a sufficient set;
- and it is necessary for the set to be sufficient.

Definition (Direct NESS)

X = x directly NESS-causes Y = y w.r.t. (M, \vec{u}) if there exists a $\vec{W} = \vec{w}$ so that the following conditions hold:

DN1.
$$(M, \vec{u}) \models X = x \land \vec{W} = \vec{w} \land Y = y$$
.
DN2. $X = x \land \vec{W} = \vec{w}$ is sufficient for $Y = y$ w.r.t. (M, \vec{u}) .

DN3. $\vec{W} = \vec{w}$ is not sufficient for Y = y w.r.t. (M, \vec{u}) .

from Direct NESS to NESS

Late Preemption:

- $V = BH_1 \vee BH_2$
- $BH_1 = A_1$
- $BH_2 = A_2 \wedge \neg BH_1$

Context \vec{u} : $A_1 = 1$ and $A_2 = 1$

$$A_1 = 1$$
 directly NESS-causes $BH_1 = 1$

 $BH_1 = 1$ directly NESS-causes V = 1

NESS-causation: transitive closure of direct NESS-causation *along a path*

So
$$A_1 = 1$$
 NESS-causes $V = 1$ along $\{A_1, BH_1, V\}$.

Example (One Assassin)

Assassin₁ does not shoot, so that Victim is killed by $Assassin_2$'s shot. As before, $Assassin_1$ is the faster shooter, so had he shot, then it would have been his bullet that got to Victim first.

Assassin₁ is obviously not responsible for Victim's death.

(Causal Condition):

- $A_1 = 0$ is sufficient for $BH_1 = 0$.
- $BH_1 = 0 \land A_2 = 1$ is sufficient for $BH_2 = 1$,
- whereas $A_2 = 1$ is not.
- $BH_1 = 0 \land A_2 = 1$ is sufficient for $BH_2 = 1$.
- $BH_2 = 1$ is sufficient for Death = 1.
- So $A_1 = 0$ NESS-causes V = 1 along the path $\{A_1, BH_1, BH_2, V\}$.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

(Epistemic Condition): flare gun to warn Victim

Outline

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

1 High Level Overview

2 Causal Models and NESS

3 Causal Condition: Counterfactual NESS

4 Epistemic Condition

Counterfactual NESS

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

The Counterfactual NESS Definition of Causation, AAAI 2021

Definition (CNESS-causation)

- $C = c \ CNESS$ -causes $E = e \ if$
 - C = c NESS-causes E = e along some path p and
 - there exists a c' such that C = c' would not have NESS-caused E = e along any subpath p' of p.

Counterfactual NESS

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

One Assassin Example:

- $A_1 = 0$ NESS-causes V = 1 along the path $\{A_1, BH_1, BH_2, V\}.$
- $A_1 = 1$ NESS-causes V = 1 along the path $\{A_1, BH_1, V\}$.
- $\{A_1, BH_1, V\} \subseteq \{A_1, BH_1, BH_2, V\}.$
- So $A_1 = 0$ is not a CNESS-cause of V = 1.

Against HP-causation

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Beckers, S. (2021) The Counterfactual NESS Definition of Causation, AAAI.

Beckers, S. (2021) Causal Sufficiency and Actual Causation, Journal of Philosophical Logic.

Against HP-causation

Example (Loader)

"Suppose that a prisoner dies either if A loads B's gun and B shoots, or if C loads and shoots his gun. A loads B's gun, B does not shoot, but C does load and shoot his gun, so that the prisoner dies. We would not want to say that A = 1 is a cause of D = 1, given that B did not shoot (i.e., given that B = 0)." (HP 2005)

• $D = (A = 1 \land B = 1) \lor C = 1$

A = 1 does not HP-cause D = 1

Example (Loader 2)

C only fired his gun because B did not shoot $(C = \neg B)$.

A = 1 HP-causes D = 1

Outline

1 High Level Overview

2 Causal Models and NESS

3 Causal Condition: Counterfactual NESS

4 Epistemic Condition

Two Lessons

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 ○のへ⊙

Preventing the outcome matters more than preventing causing the outcome

2 Yet preventing causing the outcome does matter

Lesson 1

Example (Bomb)

A bomb (*B*) is connected to three detonators (D_1 , D_2 , and D_3) by two switches (S_1 and S_2). D_1 is functional if only S_1 is on, D_2 is functional if only S_2 is on, and D_3 is functional whenever S_1 is on.

- $B = D_1 \vee D_2 \vee D_3$
- $D_1 = S_1 \wedge \neg S_2$
- $D_2 = S_2 \wedge \neg S1$
- $D_3 = S_1$
- $Pr(S_1 = 1) = 0.6$

Assassin₂ decides to turn on S_2 , thereby guaranteeing that the bomb will explode. Assassin₁ decides not to turn on S_1 , so that the bomb explodes only due to the functioning of D_2 .

Causal Condition: $S_2 = 1$ causes B = 1

Intuition: Assassin₂ is responsible for B = 1

Preventing Outcome (**HK**):

$$P(B = 1 | do(S_2 = 1)) = 1$$

>
 $P(B = 1 | do(S_2 = 0)) = 0.6$

Preventing Causation (**BvH**):

$$P(S_2 = 1 \text{ causes } B = 1) = 0.4$$

< $P(S_2 = 0 \text{ causes } B = 1) = 0.6$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Lesson 2

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Example (**Two Assassins**) $Pr(A_2 = 1) = 1$, so Pr(V = 1) = 1

So Assassin₁ minimizes probability of outcome.

But he is still responsible!

Moral of the story:

- Priority: try to prevent outcome
- If successful: try to prevent causing outcome

Definition (Responsibility)

An agent who performs A = a is responsible for outcome O = o w.r.t. a responsibility setting M, \vec{u}, \mathcal{E}) if:

(Causal Condition) A = a CNESS-causes O = o w.r.t. (M, \vec{u}) .

(Epistemic Condition) There exists $a' \in \mathcal{R}(A)$ so that one of the following holds: • Pr(O = o|do(A = a)) > Pr(O = o|do(A = a'))

$$Pr(O = o|do(A = a)) = Pr(O = o|do(A = a'))$$

and
$$Pr(A = a' CNESS causes O = a > Pr(A = a' CNESS causes O)$$

Pr(A = a CNESS-causes O = o > Pr(A = a' CNESS-causes O = o).

Conclusion

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Choices:

- Formalism: causal models
- Actual Causation = Counterfactual NESS
- Epistemic Condition: give priority to Actuality Condition, but do not forget Causal Condition.

Future work:

- Multiple outcomes/agents/actions
- Extend to blame and praise
- Incorporate Harm:
 - Beckers, S., Chockler, H., and Halpern, J.Y. (2022). A Causal Analysis of Harm, *NeurIPS 2022*.
 - Beckers, S., Chockler, H., and Halpern, J.Y. (2023). Quantifying Harm, *IJCAI 2023*.