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• First time applied in the 60’s to assess effect of receiving certificate of 
merit on students future academic career


• Problem: Intervention assigned based on cutoff criterion → no overlap 
between groups with scores below and above the cutof
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• First time applied in the 60’s to assess effect of receiving certificate of 
merit on students future academic career


• Problem: Intervention assigned based on cutoff criterion → no overlap 
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• Solution: Overlap very close to the cutof → local causal effect

Regression Discontinuity Design
Why?
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RDD - fuzzy model, example
Hlabisa HIV Treatment and Care Programme

Impact on immediate antiretroviral 
therapy (ART) on retention in care.

X - CD4 count

c - 350 cells/ml

T - ART initiation

Y - binary outcome: 1 if evidence for    
retention in care 


Source:Bor J,et.al. Effect of eliminating CD4-count thresholds on HIV treatment initiation in South Africa: An empirical 
modeling study. PLoS One. 2017 Jun 15;12(6):e0178249. doi: 10.1371/journal.pone.0178249. PMID: 28617805; PMCID: 
PMC5472329. 
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• Mathematical problem: analysis is unstable

Cutof

Guideline imposed through a policy Point with a significant jump 

in the treatment probability

experiment design perspective mathematical perspective
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RDD - fuzzy model, example revisited

c = 350 cells/ml is not the cutoff! 



RDD - fuzzy model, example revisited
c = 350 cells/ml is not the cutoff!

• Misleading clustering:

Points on the two sides of the 
cutoff clustered together 


• Misleading calculations:

Continuity assumptions violated


• Probable cutoff at c=355 close to 
the guideline
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T |X=x ∼ ber(p(x))

a0,l, b0,l, a1,l, b1,l, a0,r, b0,r, a1,r, b1,r, j, c

Uniform priors
Uniform prior

Informative prior
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Outcome function  
How to make Bayesian inference (more) local?

Problem: Bayesian model fits function to 
the whole data.

Idea: turn a disadvantage into an 
advantage. 

More information, less uncertainty.


X - scorec

Y                  
- outcome

Y(X) = 𝒩(0,σ2) +

a0,l + a1,l(X − k1)  for k1 < X < c

a0,l + a1,l(X − k1) + a2,l(X − k1)2 + a3,l(X − k1)3 for X ≤ k1 < c
a0,r + a1,r(X − k2)  for c ≤ X < k2

a0,r + a1,r(X − k2) + a2,r(X − k2)2 + a3,r(X − k2)3 for c < k2 ≤ X



How to combine the two models?

Cut posterior approach: first sample cutoff location, then treatment effect

Joint model: sample all parameters jointly, 

feedback between the outcome function and probability function 



How to combine the two models?

Cut posterior approach: first sample cutoff location, then treatment effect

Joint model: sample all parameters jointly, 

feedback between the outcome function and probability function 



Simulation results
Lee function

4th degree polynomial 


Small jump of 0.04



X ∼ 2beta(2,4) − 1



Simulation results
Treatment effect = 0.04, 100 simulations, 500 data points

Local linear 
regression

Localised Cubic Cubic

Absolute error 61 46 0.09

95% CI length 0.25 0.15 0.2

95% CI coverage 0.89 0.93 0.59



Simulation results
Let’s add fuzziness 



Simulation results
Treatment effect approx 0.07, j=0.55, 50 simulations

Local linear 
regression

Localised Cubic 
Known c

Localised Cubic 
Unknown c

Absolute error 0.14 0.1 0.11

95% CI length 0.81 0.34 0.37

95% CI coverage 0.96  0.92  0.92



Simulation results
Treatment effect approx 0.07, j=0.25, 50 simulations

Local linear 
regression

Localised Cubic 
Known c

Localised Cubic 
Unknown c

Absolute error 0.2335484 0.1683406 0.5739337

95% CI length 1.636036 0.5632158 2.852051

95% CI coverage 0.96  0.96 0.94



Coming up: arXiv manuscript, r package 

Do you have some interesting dataset?  

Reach out!
j.m.kowalska@amsterdamumc.nl


