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Regression Discontinuity Design
Why?

First time applied in the 60’s to assess effect of receiving certificate of

merit on students future academic career

Problem: Intervention assigned based on cutoff criterion — no overlap
between groups with scores below and above the cutoft
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Solution: Overlap very close to the cutoff — local causal effect
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RDD - fuzzy model, example

Hlabisa HIV Treatment and Care Programme

Impact on immediate antiretroviral
therapy (ART) on retention in care.

i X - CD4 count
of i c - 350 cells/ml

. \ T - ART initiation

Y - binary outcome: 1 if evidence for
retention in care

Started ART Within 6 Months
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0 200 350 500 750 1000
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Source:Bor J,et.al. Effect of eliminating CD4-count thresholds on HIV treatment initiation in South Africa: An empirical
modeling study. PLoS One. 2017 Jun 15;12(6):e0178249. doi: 10.1371/journal.pone.0178249. PMID: 28617805; PMCID:
PMC5472329.
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We don’t want the denominator to be small:
Philosophical problem: there is almost no compliance so it puts the whole design into question

Mathematical problem: analysis is unstable
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Cutoff

experiment design perspective mathematical perspective

Point with a significant jump

Guideline imposed through a policy in the treatment probability
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RDD - fuzzy model, example revisited

c = 350 cells/ml is not the cutoff!



RDD - fuzzy model, example revisited

c = 350 cells/ml is not the cutoff!

Posterior probability - cutoff location

O
~

Probability

O
N

0.0

345

350

355
CD4 Count

360

Misleading clustering:

* Points on the two sides of the
cutoff clustered together

Misleading calculations:
* Continuity assumptions violated

Probable cutoff at c=355 close to
the guideline



Treatment probability

Bayesian approach

17 ”/-Q—ﬂ

T - treatment
allocation

C X - score



Treatment probability

Bayesian approach

t Assumptions:
1+ : C :
”/"—ﬂ * Function is increasing
T - treatment * Convex/concave on each side of the
allocation § cutoff
oL—e 004} ® o —

C X - score



Treatment probability

Bayesian approach

Assumptions:
* Function Is increasing

T - treatment * Convex/concave on each side of the
allocation : cutoff

I'ly_, ~ ber(p(x))

* p(X) : two connected linear functions on
each side of the cutoff

C X - score



Treatment probability

Bayesian approach

Assumptions:
* Function Is increasing

e Convex/concave on each side of the
cutoff

T - treatment
allocation

Tly_, ~ ber(p(x))
* p(X) : two connected linear functions on

each side of the cutoff

* Additional requirement: minimal jump
size

C X - score



Treatment probability

Bayesian approach

! Assumptions:
14 L. .
* Function Is increasing

e Convex/concave on each side of the
cutoff

T - treatment
allocation

I'ly_, ~ ber(p(x))

* p(X) : two connected linear functions on
each side of the cutoff

C X - score

ao ;> o @y 1, 01 1 A 1> bo 10 A1 s 0y s, C - | o |
_— * Additional requirement: minimal jump

size

Uniform priors
Uniform prior

Informative prior
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Outcome function

How to make Bayesian inference (more) local?

N Problem: Bayesian model fits function to
the whole data.

Y ldea: turn a disadvantage into an
- outcome advantage.
- More information, less uncertainty.
C X - score
ay,; + a; (X — ky) fork, < X<c
an +a, (X—k)+a, (X—kl)>+a,(X—=kl1) forX <k, <c
Y(X) = H(0.0%) + 0,0 T ¢1, 1 2,1 3,1 1
ay, + a; (X — k) forc <X <k,

ay,+ a; (X —ky) +a, (X —ky)* + a5 (X — k)’ forc <k, <X



How to combine the two models?

Cut posterior approach: first sample cutoff location, then treatment effect

Joint model: sample all parameters jointly,
feedback between the outcome function and probability function
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Simulation results

Lee function

4th degree polynomial
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Simulation results

Treatment effect = 0.04, 100 simulations, 500 data points

Local linear Localised Cubic Cubic
regression

Absolute error 61 46 0.09
95% Cl length 0.25 0.15 0.2

95% CI coverage 0.89 0.93 0.59



Simulation results

Let’s add fuzziness

Treatment probability function jump=0.55
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Simulation results

Treatment effect approx 0.07, j=0.55, 50 simulations

Local linear Localised Cubic Localised Cubic
regression Known ¢ Unknown ¢

Absolute error 0.14 0.1 0.11

95% Cl length 0.81 0.34 0.37

95% CI coverage 0.96 0.92 0.92



Simulation results

Treatment effect approx 0.07, j=0.25, 50 simulations

Local linear Localised Cubic Localised Cubic
regression Known ¢ Unknown ¢

Absolute error 0.2335484 0.1683406 0.5739337

95% Cl length 1.636036 0.5632158 2.852051

95% CI coverage 0.96 0.96 0.94



Coming up: arXiv manuscript, r package

Do you have some interesting dataset?

Reach out!
j.m.kowalska@amsterdamumec.nl



