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Motivation Probability and Causation

Probabilistic models, such as

Bayesian Networks, enable the

representation of joint probabilities

ℙ( , )

Causal ordering is not necessary

for probabilistic modelling.

…but it’s needed to predict the effect

of interventions!

ℙ ( ∣ )

ℙ ( ∣ )
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Motivation Key Challenges: Learning

Learning causal models (a.) is

challenging and generally requires

non-observational data.

We can address it by restricting the

data generating process (b.).

𝑋1 𝑋2

𝑋3

𝑋1 𝑋2 𝑋3
-1.2 0.3 0.1

1.0 0.2 0.3

0.5 0.1 0.2

⋮ ⋮ ⋮

(a.) (b.)
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Motivation Key Challenges: Representing

Causal relations might not be

defined on the same level of detail

of the observed variables.

Causal Abstraction assumes the

existence of higher-level aggregated

abstract variables.

Can we use this to understand or

interpret largemodels?

𝑌1

𝑌2

𝑌3
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Structural Causal Models Definition

A Structural Causal Model

M = (𝑿, 𝑬, 𝒇 ,ℙ𝑬),

specifies the deterministic

mechanisms 𝒇 between a set of

endogenous variables 𝑿 and a

set of exogenous variables 𝑬
with distribution ℙ𝑬.

𝐸1 𝑋1

𝐸3 𝑋3

𝐸2 𝑋2

𝐸4

𝑋4

ℙ(𝐸1)

ℙ(𝐸3)

ℙ(𝐸2)

ℙ(𝐸4)

Exogenous

Endogenous
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Structural Causal Models Definition

To each endogenous variable

𝑋 ∈ 𝑿, we assign an exogenous

variable 𝐸𝑋 ∈ 𝑬.
The endogenous mechanism 𝑓𝑋
of 𝑋 is then defined as a function

𝑓𝑋 ∶ D(Pa(𝑋) ∪ 𝐸𝑋) → D(𝑋).

We define the model reduction

M∶ D(𝑬) → D(𝑿),

whenever the model is acyclic.

𝐸1 𝑋1

𝐸3 𝑋3

𝐸2 𝑋2

𝐸4

𝑋4

ℙ(𝐸1)

ℙ(𝐸3)

ℙ(𝐸2)

ℙ(𝐸4)

Exogenous

Endogenous
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Interventions How to manipulate an SCM?

Given an SCM

M = (𝑿, 𝑬, 𝒇 ,ℙ𝑬),

a subset of variables 𝑽 ⊂ 𝑿 and a setting

𝒗 ∈ D(𝑽 ), a hard intervention 𝑖 = (𝑽 ← 𝒗)
results in a SCMM𝑖 = (𝑿, 𝑬, 𝒇 𝑖,ℙ𝑬), where

𝑓 𝑖𝑋 = {
𝑣𝑋 𝑋 ∈ 𝑽

𝑓𝑋 𝑋 ∉ 𝑽 ,

for each endogenous variable 𝑋 ∈ 𝑿.

𝑋1

𝑋2

𝑋3

M
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Interventions How to manipulate an SCM?

Given an SCM

M = (𝑿, 𝑬, 𝒇 ,ℙ𝑬),

a subset of variables 𝑽 ⊂ 𝑿 and a set of

functions 𝒉, a soft intervention 𝑖 = (𝑽 ← 𝒉)
results in a SCMM𝑖 = (𝑿, 𝑬, 𝒇 𝑖,ℙ𝑬), where

𝑓 𝑖𝑋 = {
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Additive Noise Models Linear SCMs

In a linear ANM, endogenous

mechanisms have form

𝑥𝑗 = ∑
𝑋𝑖∈Pa(𝑋𝑗)

𝑤𝑖𝑗𝑥𝑖 + 𝑒𝑗,

for each 𝑋𝑗 ∈ 𝑿.

The model reduction is

M(𝒆) = (I −W)−1𝒆

= F⊤𝒆.

𝐸1 𝑋1

𝐸3 𝑋3

𝐸2 𝑋2

𝐸4

𝑋4

𝑤13

𝑤23

𝑤24

𝑤34

ℙ(𝐸1)

ℙ(𝐸2)

ℙ(𝐸3)

ℙ(𝐸4)

Exogenous

Endogenous
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Scenario Double the notation, double the fun!

Low-Level SCM

Defined on variables 𝑿 with

exogenous noise ℙ𝑬, structural
functions 𝒇, and interventions 𝑰.

L =

Sensor data, raw measurements, or

high-dimensional data.

High-Level SCM

Defined on variables 𝒀 with
exogenous noise ℙ𝑼, structural
functions 𝒈, and interventions 𝑱.

H =

Summary statistics, overviews, or

low-dimensional data.

|𝑿 | ≫ |𝒀 |
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𝜏-Abstraction Beckers and Halpern (2019)

Given two SCMs

• L = (𝑿, 𝑬, 𝒇 ,ℙ𝑬) with admissible interventions 𝑰,

• H = (𝒀 , 𝑼 , 𝒈,ℙ𝑼) with admissible interventions 𝑱,

Causal Abstraction consists of two surjective functions

• 𝜏∶ D(𝑿) → D(𝒀 ) (Endogenous Map)

• 𝛾∶ D(𝑬) → D(𝑼 ) (Exogenous Map)

that induce a unique intervention map 𝜔∶ 𝑰 → 𝑱 such that

𝜔(𝑖) = 𝑗 ⟺ Rst(𝑗) = {𝜏(𝒙) ∣ 𝒙 ∈ Rst(𝑖)}

Rst(𝑽 ← 𝒗) = {𝒙 ∣ 𝒙𝑽 = 𝒗}
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𝜏-Abstraction Interventional Consistency

H is a 𝜏-abstraction of L.

⟺

𝜏 ∘ L𝑖 = H𝜔(𝑖) ∘ 𝛾
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𝜏-Abstraction Interventional Consistency

H is a 𝜏-abstraction of L.

⟺

𝒆 𝒙
L𝑖

𝒖 𝒚H𝜔(𝑖)

𝛾 𝜏
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Intervention Map Motivation

The intervention map is defined for hard interventions only.

The intervention map does not have an explicit form.
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Soft Restriction Set Massidda, Geiger, et al. (2023)

𝑋1

𝑋2

𝑋3

{2}

𝑋4

{0, 2, 4, 6, …}

𝑋5

/

𝑖 = (𝑋3 ← 2, 𝑋4 ← 2𝑋2)

The Soft Restriction of an intervention

𝑖 = (𝑽 ← 𝒉) contains all the values that an

intervened model can assume.

SoftRst(M𝑖) = {𝒙 ∈ ℝ5 ∣ 𝑥3 = 2, 𝑥4 ∈ Image(𝜆𝑥.2𝑥)}

= {𝒙 ∈ ℝ5 ∣ 𝑥3 = 2,Even(𝑥4)}.

⎡
⎢
⎢
⎢
⎢
⎣

0.5
−0.2
2
16
9.4

⎤
⎥
⎥
⎥
⎥
⎦

∈ SoftRst(M𝑖),

⎡
⎢
⎢
⎢
⎢
⎣

0.5
−0.2
2
7
9.4

⎤
⎥
⎥
⎥
⎥
⎦

∉ SoftRst(M𝑖)

Then, we define 𝜔 as

𝜔(𝑖) = 𝑗 ⟺ SoftRst(H𝑗) = {𝜏(𝒙) ∣ 𝒙 ∈ SoftRst(L𝑖)} .
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Abstraction Ambiguity Massidda, Geiger, et al. (2023)

H

𝑌1 ≔ 𝑈1

𝑌2 ≔ 𝑈2 ∨ ¬𝑌1

𝑌3 ≔ 𝑌1 ∨ 𝑌2

L

𝑋1 ≔ 𝐸1

𝑋2 ≔ 𝐸2(𝑋1 + 1)

𝑋3 ≔ 𝑋1𝑋2

𝜏

L𝑖

𝑋1 ≔ 𝐸1

𝑋2 ≔ 𝐸2(𝑋1 + 1)

𝑋3 ≔ 𝑋1 + 𝑋2

𝑖 = (𝑋3 ← 𝑋1 + 𝑋2)

H𝑗

𝑌1 ≔ 𝑈1

𝑌2 ≔ 𝑈2 ∨ ¬𝑌1

𝑌3 ≔ [𝑌1 = 𝑌2]

H𝑗′

𝑌1 ≔ 𝑈1

𝑌2 ≔ 𝑈2 ∨ ¬𝑌1

𝑌3 ≔ 𝑌1 ∧ 𝑌2

𝑗

𝑗′

𝜔

𝜔′

Amsterdam Causality Meeting — 4th December 2024 13



Abstraction Ambiguity Massidda, Geiger, et al. (2023)

H

𝑌1 ≔ 𝑈1

𝑌2 ≔ 𝑈2 ∨ ¬𝑌1

𝑌3 ≔ 𝑌1 ∨ 𝑌2

L

𝑋1 ≔ 𝐸1

𝑋2 ≔ 𝐸2(𝑋1 + 1)

𝑋3 ≔ 𝑋1𝑋2

𝜏

L𝑖

𝑋1 ≔ 𝐸1

𝑋2 ≔ 𝐸2(𝑋1 + 1)

𝑋3 ≔ 𝑋1 + 𝑋2

𝑖 = (𝑋3 ← 𝑋1 + 𝑋2)

H𝑗

𝑌1 ≔ 𝑈1

𝑌2 ≔ 𝑈2 ∨ ¬𝑌1

𝑌3 ≔ [𝑌1 = 𝑌2]

H𝑗′

𝑌1 ≔ 𝑈1

𝑌2 ≔ 𝑈2 ∨ ¬𝑌1

𝑌3 ≔ 𝑌1 ∧ 𝑌2

𝑗

𝑗′

𝜔

𝜔′

Amsterdam Causality Meeting — 4th December 2024 13



Abstraction Ambiguity Massidda, Geiger, et al. (2023)

H

𝑌1 ≔ 𝑈1

𝑌2 ≔ 𝑈2 ∨ ¬𝑌1

𝑌3 ≔ 𝑌1 ∨ 𝑌2

L

𝑋1 ≔ 𝐸1

𝑋2 ≔ 𝐸2(𝑋1 + 1)

𝑋3 ≔ 𝑋1𝑋2

𝜏

L𝑖

𝑋1 ≔ 𝐸1

𝑋2 ≔ 𝐸2(𝑋1 + 1)

𝑋3 ≔ 𝑋1 + 𝑋2

𝑖 = (𝑋3 ← 𝑋1 + 𝑋2)

H𝑗

𝑌1 ≔ 𝑈1

𝑌2 ≔ 𝑈2 ∨ ¬𝑌1

𝑌3 ≔ [𝑌1 = 𝑌2]

H𝑗′

𝑌1 ≔ 𝑈1

𝑌2 ≔ 𝑈2 ∨ ¬𝑌1

𝑌3 ≔ 𝑌1 ∧ 𝑌2

𝑗

𝑗′

𝜔

𝜔′

Amsterdam Causality Meeting — 4th December 2024 13



Abstraction Ambiguity Massidda, Geiger, et al. (2023)

H

𝑌1 ≔ 𝑈1

𝑌2 ≔ 𝑈2 ∨ ¬𝑌1

𝑌3 ≔ 𝑌1 ∨ 𝑌2

L

𝑋1 ≔ 𝐸1

𝑋2 ≔ 𝐸2(𝑋1 + 1)

𝑋3 ≔ 𝑋1𝑋2

𝜏

L𝑖

𝑋1 ≔ 𝐸1

𝑋2 ≔ 𝐸2(𝑋1 + 1)

𝑋3 ≔ 𝑋1 + 𝑋2

𝑖 = (𝑋3 ← 𝑋1 + 𝑋2)

H𝑗

𝑌1 ≔ 𝑈1

𝑌2 ≔ 𝑈2 ∨ ¬𝑌1

𝑌3 ≔ [𝑌1 = 𝑌2]

H𝑗′

𝑌1 ≔ 𝑈1

𝑌2 ≔ 𝑈2 ∨ ¬𝑌1

𝑌3 ≔ 𝑌1 ∧ 𝑌2

𝑗

𝑗′

𝜔

𝜔′

Amsterdam Causality Meeting — 4th December 2024 13



Abstraction Ambiguity Massidda, Geiger, et al. (2023)

𝑌1 𝑌2 𝑌1 ∧ 𝑌2 [𝑌1 = 𝑌2]

F F F T

F T F F

T F F F

T T T T

The two high-level

interventions differ only for

values that are never

reached by the model for any

exogenous configuration.
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𝝉-Abstraction with Soft Interventions Massidda, Geiger, et al. (2023)

H is a 𝜏-abstraction of L on soft interventions

⟺

𝜏 ∘ 𝑭 𝑖 = 𝑮𝜔(𝑖) ∘ [𝛾 , 𝜏 ]
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H is a 𝜏-abstraction of L on soft interventions

⟺

𝒆, 𝒙 𝒙
𝑭 𝑖

𝒖, 𝒚 𝒚𝑮𝜔(𝑖)

𝛾 , 𝜏 𝜏
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𝝉-Abstraction with Soft Interventions Massidda, Geiger, et al. (2023)

By generalizing the restriction set and testing consistency

for each abstract variable, we can uniquely define 𝜔 for soft

interventions such that

𝜔(𝑖) = (𝑌 ← 𝜏𝑌 ∘ 𝑭 𝑖 ∘ 𝜏−1Pa(𝑌))
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Questions in Causal Abstraction Motivation

Which causal graphs are consistent with abstraction?

Which causalmechanisms are consistent with abstraction?
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T-Abstraction Massidda, Magliacane, et al. (2024)

H is a T-abstraction of L

⟺

H is a 𝜏-abstraction of L and 𝜏 (𝒙) = T⊤𝒙, where T ∈ ℝ|𝑿 |×|𝒀 |.
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Relevant Variables

T =

0.43 0 0

0 0 0

0.71 0 0

0 0.52 0

0 -0.12 0

0 0 0

0 0 0.98

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

The set of relevant variables of an

abstract variable 𝑌 ∈ 𝒀 is the subset

of concrete variables Π𝑅(𝑌 ) on which

it depends through T.

Lemma 6.3.1, p. 4:

Relevant variablesmust be disjoint.
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Intervention Map

As a consequence of disjointness and linearity,

the intervention map 𝜔 is uniquely defined.

𝜔(𝑽 ← 𝒗) = (𝑌 ← 𝑦) ⟺ 𝑽 = Π𝑅(𝑌 ) and 𝑦 = 𝒕⊤𝑌 𝒗.

Amsterdam Causality Meeting — 4th December 2024 20



T-direct Path

A directed path between two variables is T-direct

if and only if any other variable on the path is not relevant.

𝑋1 𝑋2 𝑋3

𝑋3

𝑋4

𝑋1
T
−→𝑋4
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Graphical Properties of T-abstraction Sufficient Edge Condition

Lemma 6.3.3, p. 77:

Let 𝑋1 ∈ Π𝑅(𝑌1) and 𝑋2 ∈ Π𝑅(𝑌2). If 𝑋1
T
−→𝑋2 in L, then

𝑌1 → 𝑌2 in H.

𝑋1

𝑋2

𝑋3

𝑋4

𝑋5

𝑋6

𝑋7 𝑋8

𝑋9

Π𝑅(𝑌1) Π𝑅(𝑌2) Π𝑅(𝑌3)

𝑌1 𝑌2 𝑌3

/
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Graphical Properties of T-abstraction Faithfulness Assumption

With cancelling paths, things get nasty!

𝑋1

𝑋2

𝑋3

𝑋4

𝑋5

1

−1

1

1

1 1

𝑌1 𝑌2

𝑌3

1 1
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Graphical Properties of T-abstraction Necessary Edge Condition

Theorem 6.3.5, p. 78:

Let 𝑌1 → 𝑌2 in H. Then, ∀𝑋1 ∈ Π𝑅(𝑌1), ∃𝑋2 ∈ Π𝑅(𝑌2) s.t. 𝑋1
T
−→𝑋2 in L.

𝑋1

𝑋2

𝑋3

𝑋4

𝑋5

𝑋6

𝑋7 𝑋8

𝑋9

Π𝑅(𝑌1) Π𝑅(𝑌2) Π𝑅(𝑌3)

𝑌1 𝑌2 𝑌3

H is a 𝜏-abstraction of L
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Properties of T-abstraction Exogenous Abstraction and Ordering

The exogenous abstraction function

is a linear transformation

𝛾 (𝒆) = S⊤𝒆,

where S = FTG−1.

S =

0.43 0 0

0.22 0 0

0.71 0 0

0 0.52 0

0 -0.12 0

0 0 -1.02

0 0 0.98

|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|
|
|
|
|
|
|

The set of block variables of an

abstract variable 𝑌 ∈ 𝒀 is the subset

of concrete variables Π(𝑌 ) on which

it depends through S.

Lemma 6.3.8, p. 81:

Relevant variables are a subset of

block variables.

Lemma 6.3.9, p. 82:

Block variables must be disjoint.

Theorem 6.3.10, p. 82:

Block variables follow abstract

ordering.
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Properties of T-abstraction Overview

𝑋3𝑋2 𝑋6 𝑋7

𝑋1 𝑋4 𝑋5 𝑋8

𝑋13 𝑋12

𝑋9 𝑋10

𝑋11

Π(𝑌1) Π(𝑌2) Π(𝑌3)

𝑌1 𝑌2 𝑌3

𝒕1 𝒕2 𝒕3

L

H

T
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Parametrical Properties of T-abstraction Theorem 6.3.13, p. 84

H is a T-abstraction of L

⟺

𝜏 ∘ L𝑖 = H𝜔(𝑖) ∘ 𝛾
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Parametrical Properties of T-abstraction Theorem 6.3.13, p. 84

H is a T-abstraction of L

⟺

𝑌𝑖 ≺H 𝑌𝑗 ⟺ Π(𝑌𝑖) ≺L Π(𝑌𝑗)

W𝑖𝑗𝒔𝑗 = 𝑚𝑖𝑗𝒕𝑖
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Parametrical Properties of T-abstraction Theorem 6.3.13, p. 84

H is a T-abstraction of L

⟺

𝑌𝑖 ≺H 𝑌𝑗 ⟺ Π(𝑌𝑖) ≺L Π(𝑌𝑗)

W𝑖𝑗(I −W𝑗𝑗)
−1𝒕𝑗 = 𝑚𝑖𝑗𝒕𝑖

This characterization enables testing for T-abstraction in closed form.
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Causal Abstraction Learning with Non-Gaussian Noise

Assuming non-Gaussian noise, linear

ANMs are identifiable from

observational data (Shimizu et al. 2006).

What about abstractions?

𝒆(𝑖) ∼ Exponential for 𝑖 = 1, … , |DL|,

𝒙(𝑖) = L(𝒆(𝑖)) for 𝑖 = 1, … , |DL|,

𝒚(𝑖) = H(𝛾 (𝒆(𝑖))) for 𝑖 = 1, … , |D𝐽|,

such that |D𝐽| ≪ |DL|.
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Abs-LiNGAM Pipeline

D𝐽 ∼ ℙL,H DL ∼ ℙL

T̂ ̂H ̂L

/

/

/

𝑲 =

i. ii.

ii.

iv.

iii.
iii.

iv.

i. Recover T̂ from D𝐽
ii. Abstract DL and recover ̂H
iii. Define constraints 𝑲 from ̂H, T̂
iv. Recover ̂L from DL and 𝑲
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Abs-LiNGAM Algorithm

Algorithm 1: Abs-LiNGAM

Input: Concrete Observational Dataset DL,

Joint Observational Dataset D𝐽.

Result: Abstraction function T̂ ∈ ℝ𝑑×𝑏,

Abstract adjacency matrix M̂ ∈ ℝ𝑏×𝑏,

Concrete adjacency matrix Ŵ ∈ ℝ𝑑×𝑑.

T̂ ← arg min
T∈ℝ𝑏×𝑑 ∑(𝒙,𝒚)∈D𝐽

‖𝒙⊤T − 𝒚⊤‖22;

for 𝑌𝑖 ∈ 𝒀 do ▷ Select Relevant Variables
Π̂𝑅(𝑌𝑖) ← {𝑋𝑘 ∈ 𝑿 ∣ [ ̂𝒕𝑖]𝑘 ≠ 0}

end

D ̂H ← {T̂
⊤
𝒙 ∣ 𝒙 ∈ DL} ▷ Create Abstract Dataset

M̂ ← DirectLiNGAM(D ̂H, ∅) ▷ Abstract Discovery
𝑲 ← ∅
for 𝑌𝑖, 𝑌𝑗 ∈ 𝒀 do ▷ Collect Prior Knowledge

if 𝑌𝑖 ̸99K 𝑌𝑗 then ▷ Check Ancestorship in M̂

for 𝑋𝑘 ∈ Π̂𝑅(𝑌𝑖), 𝑋ℎ ∈ Π̂𝑅(𝑌𝑗) do
𝑲 ← 𝑲 ∪ {𝑋𝑘 ̸99K 𝑋ℎ}

end

end

end

Ŵ ← DirectLiNGAM(DL, 𝑲) ▷ Concrete Discovery
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Abs-LiNGAM Experimental Results
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(b) Execution Time (s) over Graph Size |𝑿 |

Introducing abstract information in the LiNGAM pipeline, we gain significant

speedup (2x) in execution time (b, right) without performance loss (a, left) on the

retrieval of the concrete model (|𝑿 | ∈ [25, 50], |𝒀 | = 5).
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Applications: Surrogate Models Dyer et al. (2024)

Surrogate models are usually

trained for predictive tasks.

Causal Abstraction enables the

training of interventionally

consistent surrogate models.

Dyer et al. (2024) shows how to

fasten policy evaluation by

abstracting SIRS epidemiological

models.

𝑿𝑡 𝑿𝑡+1

= 3

= 2

= 1

𝒀𝑡

= 0

= 3

= 3

𝒀𝑡+1

𝜏 𝜏
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Applications: Neural Network Interpretation Geiger, Lu, et al. (2021)

The interpretation of neural

networks is strongly related to

causal queries: why? what if?

Causal Abstraction provides a

framework to determine

whether a neural network

implements a causal model.

Geiger, Wu, et al. (2021) also

shows how to enforce causal

constraints when training neural

networks.

𝑥 𝑦 𝑧

Neural Network Causal Model

𝐷𝑥 𝐷𝑦 𝐷𝑧

𝐿2 𝐿1

𝑂

𝑋 𝑌 𝑍

𝑊𝑆1

𝑆2
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Applications: Causal Mechanisms in LLMs Wu et al. (2024)

It works for LLMs too!
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Conclusion

Recap:

• Causal Abstraction enables concise

representation of complex causal relations.

• 𝜏-abstraction provides a and explicit

intervention map for generic causal models.

• For linearmodels, we have sound guarantees

on both graphical and functional properties.

• Applications exploit abstract causal properties

to understand and interpret complex models.

Amsterdam Causality Meeting — 4th December 2024 35



Conclusion

Recap:

• Causal Abstraction enables concise

representation of complex causal relations.

• 𝜏-abstraction provides a and explicit

intervention map for generic causal models.

• For linearmodels, we have sound guarantees

on both graphical and functional properties.

• Applications exploit abstract causal properties

to understand and interpret complex models.

Amsterdam Causality Meeting — 4th December 2024 35



Conclusion

Recap:

• Causal Abstraction enables concise

representation of complex causal relations.

• 𝜏-abstraction provides a and explicit

intervention map for generic causal models.

• For linearmodels, we have sound guarantees

on both graphical and functional properties.

• Applications exploit abstract causal properties

to understand and interpret complex models.

Amsterdam Causality Meeting — 4th December 2024 35



Conclusion

Recap:

• Causal Abstraction enables concise

representation of complex causal relations.

• 𝜏-abstraction provides a and explicit

intervention map for generic causal models.

• For linearmodels, we have sound guarantees

on both graphical and functional properties.

• Applications exploit abstract causal properties

to understand and interpret complex models.

Amsterdam Causality Meeting — 4th December 2024 35



Conclusion

Recap:

• Causal Abstraction enables concise

representation of complex causal relations.

• 𝜏-abstraction provides a and explicit

intervention map for generic causal models.

• For linearmodels, we have sound guarantees

on both graphical and functional properties.

• Applications exploit abstract causal properties

to understand and interpret complex models.

Amsterdam Causality Meeting — 4th December 2024 35



References i

Beckers, Sander and Joseph Y. Halpern (2019). “Abstracting Causal

Models”. In: Proceedings of the Thirty-Third AAAI Conference on Artificial

Intelligence and Thirty-First Innovative Applications of Artificial Intelligence

Conference and Ninth AAAI Symposium on Educational Advances in Artificial

Intelligence. Vol. 33. AAAI’19/IAAI’19/EAAI’19. Honolulu, Hawaii, USA: AAAI Press,

pp. 2678–2685. isbn: 978-1-57735-809-1. doi:

10.1609/aaai.v33i01.33012678. url:
https://doi.org/10.1609/aaai.v33i01.33012678.
Dyer, Joel et al. (2024). “Interventionally Consistent Surrogates for

Complex Simulation Models”. In: The Thirty-eighth Annual Conference on

Neural Information Processing Systems.

Geiger, Atticus, Hanson Lu, et al. (2021). “Causal abstractions of

neural networks”. In: Advances in Neural Information Processing Systems 34,

pp. 9574–9586.

https://doi.org/10.1609/aaai.v33i01.33012678
https://doi.org/10.1609/aaai.v33i01.33012678


References ii

Geiger, Atticus, Zhengxuan Wu, et al. (2021). “Inducing causal

structure for interpretable neural networks”. In: arXiv preprint

arXiv:2112.00826.

Massidda, Riccardo, Atticus Geiger, et al. (2023). “Causal abstraction

with soft interventions”. In: Conference on Causal Learning and Reasoning.

PMLR, pp. 68–87.

Massidda, Riccardo, Sara Magliacane, and Davide Bacciu (2024).

“Learning Causal Abstractions of Linear Structural Causal

Models”. In: The 40th Conference on Uncertainty in Artificial Intelligence. url:

https://openreview.net/forum?id=XlFqI9TMhf.
Shimizu, Shohei et al. (2006). “A linear non-Gaussian acyclic model

for causal discovery.”. In: Journal of Machine Learning Research 7.10.

Wu, Zhengxuan et al. (2024). “Interpretability at scale: Identifying

causal mechanisms in alpaca”. In: Advances in Neural Information

Processing Systems 36.

https://openreview.net/forum?id=XlFqI9TMhf

	Introduction
	Background
	Causal Abstraction with Soft Interventions
	Causal Abstraction on Linear Models
	Conclusions
	References

