


CausalRepresentation Learning across Multiple Environments

Problem Setup

Environment

What is the
best representation

for “reasoning”? @

Representation

é Agent
Action

Tasks
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Causal Representation Learning

CausalWorld

Pong Pinball

Causal Representation Learning
|dentify the (1) Causal Variables and (2) Causal Structure
from high-dimensional observations (e.g. videos).
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Causal Representation Learning




Causal Representation Learning across Multiple Environments

Temporal Causal Representation Learning
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Temporal Causal Representation Learning

* Dynamic Bayesian Network

 Standard assumptions
 N-Markov: only variables from the last N time steps can cause variables at time t

* Stationary/Time Invariance: transition model stays the same across time steps

R

timet —1 time t to+1 to + 2 to +3
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Temporal Causal Representation Learning

* All causal variables evolve over time and may differ between two time steps
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Temporal Causal Representation Learning

Environment Representation Learning Tasks

What are the causal variables
of the environment?

How do they interact with each
other?

Representation

How can external systems (e.g. an

agent) intervene on causal variables?
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CRL - Constraints

Observation function f(Z) — X Observation (Images, Video, Text, ...)

Latent space

Interventions

distribution shifts

Lippe et al., 2022, ICML
Brehmer et al., 2022, NeurlPS
Lippe et al., 2023, ICLR

Lippe et al., 2023, UAI

Kugelgen et al., 2023, NeurlPS

g /
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Interactive Environments

* Interventions naturally happen in interactive
environments like in Reinforcement Learning

 Agent performs actions on underlying system
* Changes dynamics of causal variables

* Effect and target of intervention unknown

« Canwe use low-level actions to identify
causal variables?

Environment
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( ] @ [\ . « . .
BISCUIT: Binary Interactions PR s el

Key assumption: Interactions between the agent and causal variables can be described
by binary variables

Time step t+1

No interaction
(observational)

Time step t

Interaction
(interventional)
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https://phlippe.github.io/publication/lippe-2022-intervention/

Causal Representation Learning across Multiple Environments

® [ ) I\ . « ; .
BISCUIT: Binary Interactions PRl

Key assumption: Interactions between the agent and causal variables can be described

by binary variables
Time step t+1

Time step t : :
: b No interaction

(observational)

Interaction
(interventional)
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https://phlippe.github.io/publication/lippe-2022-intervention/
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BISCUIT: Causal Model

Observations

Temporal causal

Causd variables relations

Binary
variables
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Binary Interactions enable Identifiability

* Knowing each variable has only two mechanisms helps identify difficult cases

» Example: Additive Gaussian Noise - Cf = u;(C*™14,IF) + ¢;, €,~N(0,02)

* Bothtrue and rotated variables model the same distribution, but under interventions, only the true
variables have two means

- I

|2
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Ildentifiability Assumptions

 Assumption 2: interaction variables of different causal variables are
not deterministic functions of each other

 Implies that two variables are not always interacted with at the same time

 Distinct interaction patterns

* If the interaction variables If are independent of Ct~1, only requires
llog, K| + 2 actions/values of Rt

« Example: agent with random policy
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Ildentifiability Assumptions

 Assumption 3: Causal Relations can be resolved over time
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BISCUIT: Identifiability Results

Assumption 1: Interactions between agent and causal variables can be described
by binary variables

Assumption 2: All causal variables have different interaction patterns
Assumption 3: Causal Relations can be resolved over time

Assumption 4: The causal mechanisms vary sufficiently over time or on interactions

Identifiability Result
The causal variables can be identified up to permutation and element-wise transformations.
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BISCUIT: Causal Model (Reminder)

Observations

Temporal causal
relations

Binary
variables

Causd variables
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BISCUIT: Architecture

Latent representation

[T T T 11

Conditional
l VAE Prior

Encoder
Previous frame

Encoder

Current frame

Decoder

Current frame

Binary
0 Agent-Variable
A A AT Interaction
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BISCUIT: Architecture

e Loss function:

Lo = ~Eqy o) 108 Po G120 By paen) [KL (a9 BOlIpulz 12, R )|

Reconstruction Prior modeling

Encoder Decoder Prior

* Prior structure:

P22 RY = | [ py (2012574 fiGRE 207D)
i

Binary function output
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CausalWorld - Robotic Trifinger

* Tri-finger robot interacting with its environment and objects

 Causalvariables include object position, frictions, colors, etc.
* Action: 9-dimensional motor angles (3 per finger)
 BISCUIT identifies causal variables accurately

Accuracy of learned causal variables
(higher is better / lower is better)

Models CausalWorld
iVAE (Khemakhem et al., 2020a) 0.28/0.00
LEAP (Yao et al., 2022b) 0.30/0.00

DMS (Lachapelle et al., 2022b) 0.32/0.00
BISCUIT-NF (Ours) 0.97/0.01
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ITHOR

Kitchen environment with 10 causal variables

Cabinet (open/closed)
Microwave (open/closed)
Microwave (on/off)

Egg (position, broken, cooked)
Plate/potato (position)

4x Stove burner (on/off, burning)
Toaster (on/off)

Actions represented as x-y coordinate of a
randomly sampled object pixel

Models iTHOR

iVAE (Khemakhem et al., 2020a) 0.48/0.35
LEAP (Yao et al., 2022b) 0.63/0.45
DMS (Lachapelle et al., 2022b)  0.61/0.40
BISCUIT-NF (Ours) 0.96/0.15

higher better / lower better
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ITHOR - Interaction Maps

* Visualize learned interaction variables by the x-y locations they are active

e Each causal variable shown in different color

Original image Overlapped image Interaction map
e m—)
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ITHOR - Triplet Evaluation

 Test compositional generation ability of latent space

* Suitable across various identifiability classes

Input Image 1

Latent vectors

Encoder Combined Generated output
latents —

é Decoder

E!_

Goal
Open Cabinet
Turn on Microwave '
Keep other variables fixed |
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ITHOR - Triplet Evaluation

Input image 1 Input image 2 Generated Output

Latents from image 2

Microwave Open
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ITHOR - Triplet Evaluation

Input image 1 ~ Input image 2 Generated Output

Latents from image 2

Stove (front-left)
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ITHOR - BISCUIT Demo
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https://colab.research.google.com/github/phlippe/BISCUIT/blob/main/demo.ipynb

Causal Representation Learning across Multiple Environments

Causal Representation Learning

Environment Training

Causal Representation
BISCUIT
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CRL across Multiple Environments

* CRL methods are commonly trained for a single causal model

* New environments require re-training models

* Canwe use the generalization ability of ML to have one model to learn them all?
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CRL across Multiple Environments

Can we generalize to

unseen environments? Training Set
? of Causal Models

CRL Method

How can we learn
causal representations from
multiple environments?
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'-IIIIII
Emmmugm




ion Learning across Multiple Environments

CRL and Object-Centric Representations
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Credit: ICLR 2022 OSC Workshop



https://objects-structure-causality.github.io/

Causal Representation Learning across Multiple Environments

CRL and Object-Centric Representations

Objects play a vital role in many causal systems

Objects often constitute a group of causal variables
e Attributes

e Position

e Qrientation

|dentifying the objects first can give a coarse identification of
the causal variables

A lot of strong tools exist for object detection
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Work in Progress

Shared current state of WIP.
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