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Introduction to causal effect heterogeneity Individual causal effects

Causal effect heterogeneity

▶ Causal effects may seriously vary across individuals.
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▶ There is the hope that the growing availability of health data presents an
opportunity to make precision medicine a clinical reality (Kosorok and

Laber, 2019).
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Introduction to causal effect heterogeneity Individual causal effects

Conditional Average Treatment Effect

▶ The individual treatment effect (ITE) cannot be observed due to the
fundamental problem of causal inference (Holland, 1986)

→ For each individual, we can only observe the outcome under one level of
the treatment.

▶ To study causal effect heterogeneity, the conditional average treatment
effect (CATE) is often estimated (Hernán and Robins, 2020, Chapter 4).
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Introduction to causal effect heterogeneity Individual causal effects

Conditional Average Treatment Effect

▶ Machine learning methods have been adapted to estimate CATEs to
mimic individual causal effects (Caron et al., 2022).

→ The CATEs may be described by complex functions of feature levels x
(=blessing).
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Introduction to causal effect heterogeneity Individual causal effects

ITE vs CATE

▶ The individualized CATEs might not be very representative for an ITE in
case of remaining effect heterogeneity (Hand, 1992; Kravitz et al., 2004;

Greenland et al., 2019).
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▶ The individualized CATE is sometimes perceived as equivalent to the ITE
(see, e.g. Lu et al. (2018))

→ Assumes conditional between-individual homogeneity (=curse).
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Notation and assumptions

Potential outcomes

▶ Factual outcomes of individual i

→ Yi equals the outcome
→ Ai equals the treatment assignment

▶ Probability distributions of factual and counterfactual outcomes are
defined in terms of the potential outcome framework (Rubin, 1974).

→ Y a
i equals the potential outcome under an intervention on the treatment to

level a (counterfactual when Ai ̸= a, and equivalent to Y | do(A = a)).
→ For an arbitrary i: a draw from the outcomes in a universe where everyone

is exposed to a.
→ Y 1

i − Y 0
i equals the individual treatment effect (ITE) of the binary

exposure
→ The joint distribution of (Y 1

i , Y
0
i ) cannot be studied directly as a result of

the fundamental problem of causal inference (Holland, 1986).
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Notation and assumptions

Causal assumptions

Assumption 1

Causal consistency
Yi = Y Ai

i

Assumption 2

Conditional exchangeability

A ⊥⊥ Y 0, Y 1 | X

▶ The set of features X will contain modifiers (as we are interested in causal effect
heterogeneity) and confounders that are necessary to obtain independence.

▶ For a feature L that is only a confounder but not a modifier (on the additive scale)

∀l: E[Y 1 − Y 0 | L = l, X̃ = x̃] = E[Y 1 − Y 0 | X̃ = x̃]

Assumption 3

Positivity
∀x: 0 < P(A = 1 | X=x) < 1
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Notation and assumptions Observed outcome distribution

Observed outcome distribution

▶ By causal consistency, we use the parameterization

Yi = Y 0
i + biAi, (1)

where bi is the ITE of individual i, so that Y 1
i = Y 0

i + bi.

→ The conditional mean of bi given features Xi equals the CATE τ(Xi),
where τ(x) = E[Y 1 − Y 0 | X = x].

▶ For our purposes, it helps to rewrite Equation (1) as

Yi = θ0(Xi) +NY i + (τ(Xi) + U1i)Ai, (2)

→ The ITE can be divided into τ(Xi) and the zero-mean individual
deviation from the CATE that is referred to as U1i.

→ The individual Y 0 has also been rewritten as the sum of its conditional
expectation θ0(x) = E[Y 0

i | Xi=x] and zero mean deviation from this
expectation NY i.
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Running example

Running example: Framingham Heart Study

▶ We simulated data based on the Framingham Heart Study (FHS) and
focus on the heterogeneity in the effect of non-alcoholic fatty liver disease
on a clinical precursor to heart failure (Chiu et al., 2020).

▶ We will simulate the following cause-effect relations

Ai = 1

{
exp(α0 + αSBPXSBP,i + αsexXsex,i)

1 + exp(α0 + αSBPXSBP,i + αsexXsex,i)
> NAi

}
(3)

Y 0
i = β0 + βsexXsex,i + βSBPXSBP,i +NY i

Y 1
i = Y 0

i + (τ0 + τsexXsex,i + τSBPXSBP,i + U1i) ,

→ U1i ⊥⊥ NY i, Xsex,i ∼ Ber(p), XSBP,i ∼ N (0, 1), U1i ∼ N (0, σ2
1),

NY i ∼ N (0, σ2
0), and NAi ∼ Uni[0, 1].

→ There is no unmeasured confounding, i.e. NAi ⊥⊥ NY i, U1i so that
Ai ⊥⊥ (Y 1

i , Y
0
i ) | Xsex,i, XSBP,i.

→ X0, is a measured variable correlated with the level of the individual

modifier U1, (U1, X0)
T ∼ N

(
0,

(
σ2
1 ρδσ2

1

ρδσ2
1 δ2σ2

1

))
.
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Running example

Running example

▶ Parameters are derived from the subset of the FHS participants
(n = 2356) as used by Chiu et al. (2020).

▶ The ATE E[Y 1 − Y 0] = 0.5, SD of the ITE
√

var(Y 1 − Y 0) = 1.41 and
positive effect probability (PEP) P(Y 1 − Y 0 > 0) = 0.64
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CATE Estimation R-learner

CATE estimation: R-learner

▶ Since the actual causal effects are not observed, defining an appropriate
loss function is not straightforward, and using machine learning methods
to study causal effect heterogeneity is challenging (Athey and Imbens, 2016).

▶ R-learners (Nie and Wager, 2020) also known as ‘double machine learning’
algorithms (Chernozhukov et al., 2018; Bach et al., 2022) appropriately adjust
for measured confounding.

▶ R-learners focus on the relation between normalized outcome and
treatment assignment as originally used by Robinson (1988)

Yi −m(Xi) = (Ai − e(Xi)) τ̃(Xi) + ÑY i, (4)

where m(x) = E[Y | X=x], e(x) = E[A | X=x] and

∀x, a: E
[
ÑY i | Ai=a,Xi=x

]
= 0.
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CATE Estimation R-learner

CATE estimation: R-learner

Using parameterization (2) one can derive, for Xi = x,

Yi −m(x) = (5)

(θ0(x) +NY i + (τ(x) + U1i)Ai)− (θ0(x) + E [(τ(x) + U1i)Ai | Xi=x])

= (Ai − e(x)) τ(x) + (AiU1i − E [AiU1i | Xi=x] +NY i) .

▶ If E[U1 +NY | A=1,X=x] ̸= E[NY | A=0,X=x], then τ̃(x) ̸= τ(x).

▶ In absence of unmeasured confounding, i.e. A ⊥⊥ NY , U1, for Xi = x,
τ̃(x) = τ(x)!
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CATE Estimation Causal Random Forest

CATE estimation: CRF algorithm

The generalized random forest implementation of the CRF as implemented in
the R-package grf (Athey et al., 2019)

1 Predict m(xi) and e(xi) for each i by fitting two separate regression
forests consisting of honest trees, each tree is fitted on a random
subsample of half the sample size.

→ A Honest tree uses different subsamples for constructing the tree and
making predictions (Wager and Athey, 2018).

→ Out-of-bag predictions m̂−i(xi) and ê−i(xi) are only based on those trees
that did not use individual i for training.

2 Create the centered outcomes Ỹ i = Yi − m̂−i(xi) and Ãi = Ai − ê−i(xi)

3 Grow B trees for Ỹ

→ For each tree, a random subsample I of the available data is taken
→ Subsequently, the subsample is again divided into J1 and J2. The honest

decision tree is only fitted on J1 and optimizes the heterogeneity in the
effect of Ã on Ỹ between the different nodes using gradient-based
approximations of treatment-effect estimates in candidate children notes,
see Athey et al. (2019, Section 2.3).
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CATE Estimation Causal Random Forest

4 For a set of for a new set of features x, similarity weights are estimated
per tree b, αbj , and are non-zero (and equal) for those elements of J2 that
fall in the same leaf as x, and are averaged over all trees to obtain αj .

→ When ∃i: xi=x then ∀j ̸=i: αj(xi) are created by averaging similarity
weights over trees where i ̸∈ J1.

5 τ̃(x) is estimated as

ˆ̃τ(x) =

∑n
i=1 αi(x)

(
Yi − m̂−i(xi)

) (
Ai − ê−i(xi)

)∑n
i=1 αi(x)

(
Ai − ê−i(xi)

) , (6)

see Athey and Wager (2019) for more details.

6 The ATE is estimated using the augmented inverse probability weighting
(AIPW) estimator (Robins and Rotnitzky, 1995) and equals

1

n

n∑
i=1

(
ˆ̃τ(xi) +Ai

Yi − µ̂1i(xi)

ê−i(xi)
− (1−Ai)

Yi − µ̂0i(xi)

1− ê−i(xi)

)
, (7)

where µ̂1i(xi) = m̂−i(xi) + (1− ê−i(xi))ˆ̃τ(xi) and

µ̂0i(xi) = m̂−i(xi)− ê−i(xi)ˆ̃τ(xi).
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CATE Estimation Results

Running example - results CRF

We fit a CRF to the simulated data, to estimate the (Xsex, XSBP, X0)-CATE
for each individual. We vary the sample size, n ∈ {200, 2000, 20000}, and the
correlation between the unmeasured modifier U1 and the measured X0,
ρ ∈ {0, 0.25, 0.5, 0.75, 1}, while fixing δ = 2.

▶ Per simulation, we fit a CRF to estimate the (Xsex, XSBP, X0)-CATE for
each individual and compute the empirical standard deviation (SD) and
positive effect probability (PEP), P(Y 1 − Y 0 > 0), of the estimated
CATE distribution, and corresponding 95% confidence intervals (CIs)
based on 1000 bootstrap samples.

▶ Based on 1000 simulations, we derive the bias, MSE, and coverage for the
ATE, SD and PEP of the ITE distribution based on the CATE
distribution.
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CATE Estimation Results
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CATE Estimation Results

Bias MSE Coverage
ρ n ATE SD PEP ATE SD PEP ATE SD PEP
0 200 0.05 -0.97 0.18 0.20 0.97 0.08 0.95 0.02 0.83
0 2000 -0.00 -1.18 0.33 0.02 1.39 0.11 0.94 0.00 0.20
0 20000 0.00 -1.18 0.35 0.00 1.40 0.12 0.95 0.00 0.00

0.25 200 0.01 -0.94 0.16 0.20 0.91 0.07 0.94 0.03 0.86
0.25 2000 0.00 -1.07 0.28 0.02 1.15 0.08 0.94 0.00 0.29
0.25 20000 -0.00 -1.02 0.26 0.00 1.04 0.07 0.95 0.00 0.00
0.50 200 0.02 -0.87 0.14 0.19 0.80 0.06 0.95 0.07 0.86
0.50 2000 0.01 -0.82 0.15 0.02 0.69 0.03 0.95 0.00 0.56
0.50 20000 0.00 -0.71 0.12 0.00 0.51 0.02 0.94 0.00 0.01
0.75 200 0.04 -0.73 0.12 0.16 0.58 0.04 0.95 0.19 0.87
0.75 2000 0.01 -0.53 0.06 0.01 0.29 0.01 0.95 0.00 0.85
0.75 20000 0.00 -0.38 0.05 0.00 0.15 0.00 0.94 0.00 0.51
1.00 200 0.04 -0.56 0.09 0.14 0.37 0.03 0.95 0.37 0.88
1.00 2000 0.01 -0.20 0.01 0.01 0.05 0.00 0.96 0.42 0.93
1.00 20000 0.00 -0.04 0.00 0.00 0.00 0.00 0.95 0.76 0.94
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CATE Estimation Confounder adjustment

Intermezzo: Confounder adjustment is crucial

▶ Sex is no modifier but only a confounder: τsex = 0
▶ n = 2000, ρ = 1

Bias
ATE SD PEP

R-learner 0.00 -0.20 0.01
No R-learner 0.15 -0.22 0.04
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CATE Estimation Confounder adjustment

Intermezzo: Confounder adjustment is crucial

▶ Sex is no modifier but only a confounder: τsex = 0

▶ n = 2000, ρ = 1

▶ Stronger confounder (βsex = 3.2 and αsex = 3):
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From conditional means to conditional distributions Conditional ITE variance

Going beyond CATEs

▶ If there is no remaining effect variability given X, then the individualized
CATE equals the individual TE.

▶ Then, the (conditional) Y 1 distribution equals the Y 0 distribution shifted
by a constant so that the conditional variances should be equal.
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▶ Otherwise, we would like to estimate the conditional (on X) variance of
the ITE next to the CATE.
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From conditional means to conditional distributions Identification of the conditional ITE variance

Identification of the conditional ITE variance

▶ For the parameterization in Equation (2), the variance of Y 1 − Y 0 | X=x
equals σ2

1(x) = E[(U1)
2 | X=x].

▶ For h(xi) = E[(Yi)
2 | Xi=xi], in the absence of unmeasured confounding,

(Yi)
2 − h(x) = (Ai − e(x))∆(xi) + γi,

where ∀x: E[γi | A=1,X=x] = E[γi | A=0,X=x] = 0,

∆(x) =
(
τ(x)2 + σ2

1(x) + 2τ(x)θ0(x) + 2E[NY U1 | Xi=x]
)
,

▶ Via estimation of τ(x) and θ0(x), a R-learner can be used to estimate

σ̃1
2
(x) = σ2

1(x) + 2E[NY U1 | X=x].
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From conditional means to conditional distributions Identification of the conditional ITE variance

▶ σ̃1
2
(x) represents the sum of the conditional variance of the ITE and

twice the conditional covariance of Y 0 and the ITE.

▶ However, as a result of the fundamental problem of causal inference,
E[NY U1 | X=x] is not identifiable.

→ So, we cannot estimate σ2
1(x) without an additional (cross-world)

assumption on the joint distribution of Y 0 and Y 1 − Y 0.

▶ Under conditional independent effect deviation (CIED), σ̃1
2
(x) = σ2

1(x),
and the conditional variance becomes identifiable.

Assumption 4 (CIED)

Conditional independent effect deviation

Y 1 − Y 0 ⊥⊥ Y 0 | X=x
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From conditional means to conditional distributions Identification of the conditional ITE variance

CIED example: Clopidogrel

▶ The antiplatelet medicine Clopidogrel reduces the risk of stroke and
myocardial infarction in individuals with acute coronary syndrome.

→ The effect depends on its conversion to an active metabolite which is
accomplished by the cytochrome P450 2C19 (CYP2C19) enzyme (Lee

et al., 2022).

▶ For individuals with a CYP2C19 gene mutation, the drug is known to
have a reduced antiplatelet effect; effect heterogeneity.

▶ There is no reason to believe that the phenotype affects platelet
aggregation in the absence of the drug.
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From conditional means to conditional distributions Identification of the conditional ITE variance

CIED remarks

▶ In cases where Y 0 is still expected to inform on the value of Y 1 − Y 0

given the levels of X, the identification assumption does not apply.

▶ Similar to Assumption 2 [Conditional Exchangeability ], this causal
assumption cannot be verified with data as it concerns unmeasured
features that affect both Y 0 and Y 1 − Y 0 and should be judged by
experts in the field of application.

▶ In contrast to Conditional Exchangeability, there is no reason that
guarantees that CIED holds in a randomized experiment.
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From conditional means to conditional distributions Extended causal random forest

Running example - results extended CRF

▶ ATE estimate remains the same as for the original CRF.

▶ The SD of the effect in the full population can be derived from the
CATEs and conditional variances.

▶ Only when the conditional ITE distribution can be well approximated
with a Gaussian distribution the distribution of Y 1 − Y 0 | X=x is
identified by the CATE and the conditional variance.

→ For illustration, we will assume the Gaussianity of the conditional ITE
distribution in our example so that we can use the extended CRF to
estimate the ITE distribution from the simulated datasets. The PEP is
estimated as n−1 ∑n

i=1 P(Zi > 0), where Zi ∼ N
(
ˆ̃τ(xi),max

{
0, ˆ̃σ1

2
(x)

})
.
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From conditional means to conditional distributions Results
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From conditional means to conditional distributions Results

Results Extended CRF

Bias MSE Coverage
ρ n ATE SD PEP ATE SD PEP ATE SD PEP
0 200 0.05 -0.06 0.04 0.20 0.25 0.02 0.95 0.90 0.91
0 2000 -0.00 0.04 0.01 0.02 0.02 0.00 0.94 0.93 0.90
0 20000 0.00 0.03 0.01 0.00 0.00 0.00 0.95 0.89 0.82

0.25 200 0.01 -0.08 0.03 0.20 0.29 0.02 0.94 0.88 0.92
0.25 2000 0.00 0.04 0.01 0.02 0.02 0.00 0.94 0.93 0.90
0.25 20000 -0.00 0.04 0.00 0.00 0.00 0.00 0.95 0.86 0.86
0.50 200 0.02 -0.07 0.03 0.19 0.27 0.02 0.95 0.90 0.92
0.50 2000 0.01 0.05 0.01 0.02 0.02 0.00 0.95 0.94 0.91
0.50 20000 0.00 0.05 0.00 0.00 0.00 0.00 0.94 0.80 0.92
0.75 200 0.04 -0.07 0.03 0.16 0.26 0.02 0.95 0.92 0.92
0.75 2000 0.01 0.07 -0.00 0.01 0.03 0.00 0.95 0.91 0.94
0.75 20000 0.00 0.07 -0.00 0.00 0.01 0.00 0.94 0.71 0.93
1.00 200 0.04 -0.03 0.02 0.14 0.26 0.02 0.95 0.91 0.92
1.00 2000 0.01 0.09 -0.01 0.01 0.03 0.00 0.96 0.90 0.93
1.00 20000 0.00 0.09 -0.01 0.00 0.01 0.00 0.95 0.56 0.89
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From conditional means to conditional distributions Alternative scenarios

CIED violation

Cause-effect relations in Equation (3), can be generalized with(
NY

U1

)
∼ N

((
0
0

)
,

(
σ2
0 κσ0σ1

κσ0σ1 σ2
1

))
,

so that the original example is obtained for κ = 0. We set σ1 so that the
variance of Y 1 is the same as in the main example.

▶ For n = 2000 and κ = 0 (so that CIED applies)
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κ= 0

The estimand of the extended CRF is σ̃1
2
(x) = σ2

1(x) + 2E[NY U1 | X=x], so

that for κ ̸= 0 : σ̃1
2
(x) ̸= σ2

1(x).
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From conditional means to conditional distributions Alternative scenarios

κ < 0

▶ n = 2000
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From conditional means to conditional distributions Alternative scenarios

κ > 0

▶ n = 2000
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Concluding remarks

Concluding remarks

▶ The individualized CATE can still seriously differ from the ITE.

→ Remaining effect heterogeneity beyond heterogeneity in the CATEs can
result in a lack of generalizability (Seamans et al., 2021).

▶ Under remaining effect homogeneity, the conditional second moments of
the treated and the controls should be similar.

▶ To estimate the (conditional) variance of the ITE, we need to assume how
the ITE and Y 0 are correlated.

→ For example, by assuming conditional independent effect deviation.

▶ As an example, we have extended the CRF algorithm (Athey et al., 2019)

also to estimate the difference in conditional variance between treated and
controls.

▶ The identification assumptions cannot be verified with data and should be
based on expert knowledge.
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Any questions?

#: r.a.j.post@tue.nl
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Appendix

Non-Gaussian conditional effect distributions

We let U1
d
= exp(X)− µ, where X ∼ N (0, σ2) and

σ =

√
log

(
0.5

√
4σ2

1 + 1 + 0.5

)
(8)

µ = exp(0 + 0.5σ2), (9)

▶ X3 | U1=u1 ∼ N
(
u1δρ, δ

2σ2
1(1− ρ2)

)
For this setting, Assumption 4 is valid so that the extended CRF can be used
to estimate the SD. However, assuming Gaussianity of the conditional ITE,
will result in a bias of the PEP when ρ equals 0 or 0.5.
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Appendix

Non-Gaussian conditional effect distributions

▶ n = 2000
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